1.11 Evectric DipoLE

An electric dipole is a pair of equal and opposite point charges gand —q.
separated by a distance 2a. The line connecting the two charges defines
a direction in space. By convention, the direction from —q to q is said to
be the direction of the dipole. The mid-point of locations of -q and g is
called the centre of the dipole.

The total charge of the electric dipole is obviously zero. This does not
mean that the field of the electric dipole is zero. Since the charge q and
—q are separated by some distance. the electric fields due to them, when
added, do not exactly cancel out. However, at distances much larger than
the separation of the two charges forming a dipale (r >> 2a). the fields
due to q and —q nearly cancel out. The electric field due to a dipole
therefore falls off, at large distance, faster than like 1/ (the dependence
an r of the field due to a single charge g). These qualitative ideas are
borne out by the explicit calculation as follows:

1.11.1 The ficld of an electric dipole

The electric field of the pair of charges [-q and g) at any point in space
can be found out from Coulomb’s law and the superposition principle.
The results are simple for the following two cases: (i) when the point is on
the dipole axis, and (if) when it is in the equatorial plane of the dipole,
i.e.. on a plane perpendicular to the dipole axis through its centre. The
electric field at any general point P is obtained by adding the electric
fields E_ due to the charge -q and E,_ due to the charge q. by the
parallelogram law of vectors.

(i) For points on the axis

Let the point P be at distance r from the centre of the dipole on the side of
the charge g, as shown in Fig. 1.20(a). Then
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At large distances (r >> a), this reduces to
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From Eqs. (1.15) and (1.18), it is clear that the dipole field at large
distances does not involve g and a separately: it depends on the product
qga. This suggests the definition of dipole moment. The dipole moment
vector p of an electric dipole is defined by

P=9q%x2ab (1.19)
that is. it is a vector whose magnitude is charge q times the separation
2a (between the pair of charges q. —-g) and the direction is along the line
from —q to q. In terms of p, the electric field of a dipole at large distances

takes simple forms:
At a point on the dipole axis
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At a point on the equatorial plane
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1.11.2 Physical significance of dipoles

In most molecules, the centres of positive charges and of negative charges*
lie at the same place. Therefore, their dipole moment is zero. CO, and
CH, are of this type of molecules. However, they develop a dipole moment
when an electric field is applied. But in some molecules, the centres of
negative charges and of positive charges do not coincide. Therefore they
have a permanent electric dipole moment, even in the absence of an electric
field. Such molecules are called polar molecules. Water molecules, H,O,
is an example of this type. Various materials give rise to interesting

properties and important applications in the presence or absence of
electric field.



1.14 Gauss's Law

As a simple application of the notion of electric flux, let us consider the
total flux through a sphere of radius r, which encloses a point charge q
at its centre. Divide the sphere into small area elements, as shown in
Fig. 1.25.

‘The flux through an area element AS is

Ag= E-ASE@!-AS (1.28)
where we have used Coulomb’s law for the electric field due to a single
charge g. The unit vector T is along the radius vector from the centre to
the area element. Now. since the normal to a sphere at every point is
along the radius vector at that point, the area clement AS and T have
the same direction. Therefore,
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Now S, the total area of the sphere, equals 4ar”, Thus,
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Equation (1.30) is a simple illustration of a general result of
electrostatics called Gauss's law.

We state Gauss's law without proof:

Electric flux through a closed surface S

=q/¢, (1.31)

q = total charge enclosed by S.

The law implies that the total electric flux through a closed surface is
zero if no charge is enclosed by the surface. We can see that explicitly in
the simple situation of Fig. 1.26.

Here the electric field is uniform and we are considering a closed
cylindrical surface, with its axis parallel to the uniform field E. The total
flux ¢ through the surface is ¢ = ¢, + ¢, + ¢, where ¢, and ¢, represent
the flux through the surfaces 1 and 2 (of circular cross-section) of the
cylinder and ¢, is the flux through the curved cylindrical part of the
closed surface. Now the normal to the surface 3 at every point is
perpendicular to E, so by definition of flux. ¢, = 0. Further, the outward
normal to 2 is along E while the outward normal to 1 is opposite to E.
Therefore,

9,=-ES, 4=+ES,
5.=5.=8
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where Sis the area of circular cross-section. Thus, the total flux is zero,

as expected by Gauss's law. Thus, whenever you find that the net electric

flux through a closed surface is zero, we conclude that the total charge
contained in the closed surface is zero.

The great significance of Gauss's law Eq. (1.31), is that it is true in
general, and not only for the simple cases we have considered above. Let
us note some important points regarding this law:

(i) Gauss's law is true for any closed surface, no matter what its shape
or size.

(ii) The term q on the right side of Gauss's law, Eq. (1.31), includes the
sum of all charges enclosed by the surface. The charges may be located
anywhere inside the surface.

(iii) In the situation when the surface is so chosen that there are some
charges inside and some outside, the electric field [whose flux appears
on the left side of Eq. (1.31)] is due to all the charges, both inside and
outside S. The term g on the right side of Gauss's law, however,

34 represents only the total charge inside S.

Electric Charges
and Fields

(iv) The surface that we choose for the application of Gauss's law is called
the Gaussian surface. You may choose any Gaussian surface and
apply Gauss's law. However, take care not to let the Gaussian surface
pass through any discrete charge. This is because electric field due
to a system of discrete charges is not well defined at the location of
any charge. (As you go close to the charge, the field grows without
any bound.) However, the Gaussian surface can pass through a
continuous charge distribution.
Gauss's law is often useful towards a much easier calculation of the
electrostatic field when the system has some symmetry. This is
facilitated by the choice of a suitable Gaussian surface.
(vi) Finally, Gauss's law is based on the inverse square dependence on
distance contained in the Coulomb'’s law. Any violation of Gauss's
law will indicate departure from the inverse square law.

)

=3

. Toamanla 1 11 Tha alanivia fald cnmannante dn Pia 1 97 ava -



3.

Electric and magnetic forces determine the properties of atoms,
lecules and bulk matt
From simple experiments on frictional electricity. one can infer that
there are two types of charges in nature; and that like charges repel
and unlike charges attract. By convention, the charge on a glass rod
rubbed with silk is positive; that on a plastic rod rubbed with fur is
then negative.
Conductors allow m t of electric charge through them, insulators
do not. In metals, the mobile charges are electrons: in electrolytes
bath positive and negative ions are mobile.
Electric charge has three basic properties: quantisation, additivity
and conservation.
Quantisation of electric charge means that total charge (g) of a body
is always an integral multiple of a basic quantum of charge () i.e.,
q=ne where n=0, £1, 2, £3, .... Proton and electron have charges
+e, —e, respectively. For macroscopic charges for which n is a very large
number, quantisation of charge can be ignored.
Additivity of electric charges means that the total charge of a system
is the algebraic sum (i.e.. the sum taking into account proper signs)
of all individual charges in the system.
Conservation of electric charges means that the total charge of an
isolated system remains unchanged with time. This means that when
bodies are charged through friction, there is a transfer of electric charge
from one body to another. but no creation or destruction of charge.
Coulomb’s Law: The mutual electrostatic force between two point
charges q, and g, is proportional to the product q,q, and inversely
proportional to the square of the distance r,, separating them.
Mathematically,
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F,, = force on g, due to q, = 2

where L, is a unit vector in the direction from g, to g, and k= E
is the constant of proportionality.
In SI units, the unit of charge is coulomb. The experimental value of
the constant g, is

£,=8.854x 107 C* N m™
The approximate value of k is

k=9x10°Nm*C™
The ratio of electric force and gravitational force between a proton
and an electron is

ke
G mm,
Superposition Principle: The principle is based on the property that the
forces with which two charges attract or repel each other are not

affected by the presence of a third (or more] additional charge(s). For
an assembly of charges q,, q,. qs. ..., the force an any charge, say q,, is

=94 x 10™
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the vector sum of the force on g, due to q,, the force on g, due to q,,
and so on. For each pair, the force is given by the Coulomb's law for
two charges stated earlier.

The electric field E at a point due to a charge configuration is the
force on a small positive test charge g placed at the point divided by
the magnitude of the charge. Electric field due to a point charge g has
amagnitude | ql /4ne,r?; it is radially outwards from q. if q is positive,
and radially inwards if g is negative. Like Coulomb force, electric field
also satisfies superposition principle.

An electric field line is a curve drawn in such a way that the tangent
at each point on the curve gives the direction of electric field at that
point. The relative closeness of field lines indicates the relative strength
of electric field at different points: they crowd near each other in regions
of strong electric field and are far apart where the electric field is
weak. In regions of constant electric field, the field lines are uniformly
spaced parallel straight lines.

Some of the important properties of field lines are: (i) Field lines are
continuous curves without any breaks. (if) Two field lines cannot cross
each other. (iii) Electrostatic field lines start at positive charges and
end at negative charges —they cannot form closed loops.

An electric dipole is a pair of equal and opposite charges q and -g
separated by some distance 2a. Its dipole moment vector p has
magnitude 2ga and is in the direction of the dipole axis from -q to q.
Field of an electric dipole in its equatorial plane (i.e., the plane
perpendicular Lo ils axis and passing through ils centre) at a distance
r from the centre:
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Dipole electric field on the axis at a distance r from the centre:
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The 1/r° dependence of dipole electric fields should be noted in contrast
to the 1/r* dependence of electric field due to a point charge.

In a uniform electric field E, a dipole experiences a torque g given by
T=p*E
but experiences no net farce.
The flux A¢ of electric field E through a small area element AS is
given by
A¢ = E:AS
The vector area element AS is
AS=ASn

where AS is the magnitude of the area element and 0 is normal to the
area element, which can be considered planar for sufficiently small AS,



For an area element of a closed surface, @ is taken to be the direction
of oufward normal, by convention.

15. Gauss's law: The flux of electric field through any closed surface S is
1/, times the total charge enclosed by S. The law is especially useful
in determining electric field E, when the source distribution has simple
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where A is a unit vector normal to the plane, outward on either side.
(iif) Thin spherical shell of uniform surface charge density o
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where ris the distance of the point from the centre of the shell and R
the radius of the shell. q is the total charge of the shell: g = 4x2R%.
The electric field outside the shell is as though the total charge is
concentrated at the centre. The same result is true for a solid sphere
of uniform volume charge density. The field is zero at all points inside
the shell.

Physical quantity Symbol Dimensions Unit Remarks
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